Develoment a Móvil Laboratory for Metrological Assegurance of quality and in Natural Gas Custody Transfer in Colombia

enci

Science is but a perversion of itself unless it has as its ultimate goal the betterment of humanity. Nikola Tesla

Scientific activity is addressed to satisfy curiosity and solve hesitations about how natural laws are arranged and which ones they are.

We are confident that national and international scientific community will use MET&FLU Journal as a tool to share the highest and most relevant discoveries, readers will find every semester a pleasing topic which will allow transferring knowledge at the step that our society demands.

Development a MÓVIL LABORATORY for Metrological Assurance of quality and quantity in Natural Gas Custody Transfer In Colombia

 Henry Abril (habril@cdtdegas.com)
 Juan Manuel Ortíz (juanmanuel.ortiz@tgi.com.co)

 Luis Eduardo García (lgarcia@cdtdegas.com)
 John Fredy Velosa (john.velosa@tgi.com.co)

Transportadora de Gas Internacional S.A. ESP Corporación CDT de GAS km 2 Via Refugio PTG, Piedecuesta - Colombia Cra 34 No. 41-51 Bucaramanga - Colombia

Abstract:

As an alternative to provide traceability to measurements of Quality and Quantity of Natural Gas on-site, was developed by the Technological Development Center of Gas and the International Gas Transportation Company, with the support of COLCIENCIAS, a New Mobile Metrology laboratory, that integrates the facilities to operate as a permanent metrological laboratory and also with Calibration and Measurement Capabilities (CMC) according to the requirements of the natural gas measurement process.

INTRODUCCIÓN 1.

As a result, a vehicle was set up as a mobile The relevance of providing traceability to gas laboratory, which stores, transport and quality and quantity in field increases every operates the standards and measurement day. However, this task is expensive, generates instruments required to evaluate the composirisks related to equipment transport, demands tion of C10+, HCDP and natural gas humidity, and adequate logistics and the required time to calibrate the instruments measuring the quantities fulfill the measurement assurance process involved in the custody transfer process, (calibration, confirmation and correction) may such as: gas volume, pressure, temperature, be long, causing disagree among agents involved frequency and electrical quantities associated, in the natural gas custody transfer process. under Quality Management System ISO/IEC 17025. Additionally, it is possible to perform electrome-As a feasible alternative to provide traceability chanical maintenance tasks to the measurement system, guaranteeing the NG guality and guantity measured in the MS.

to the measurements of gas quality and quantity in field, International Gas Transmission Company (TGI S.A. ESP) and the Gas Technological Development Center (CDT de GAS), suppor-This metrology mobile laboratory was denomited by COLCIENCIAS, planned and carried out the nated M3Tlab due to its fundamental characdesign and commissioning of a mobile laboratory integrating the facilities to operate as a statioteristics: Metrology, Mobility, Maintenance and Traceability (MMMT). This concept game leads nary metrology laboratory and CMC conform to us to a simple equality: MMM=M3, and thus we the requirements of the natural gas measureobtain M3T (or MET for Metrology) and lab for ment processes. laboratory. Coincidentally when reading M3 cubic meter is noticed (m³), a key quantity when The concept of mobile laboratory came up from measuring gas volume. the necessity to keep strengthening and impro-

ving the transparency and equity in natural gas custody transfer operations, by means of the metrological assurance of the small MS of the TGI S.A. ESP transmission system which guantifies 15% of the gas transmitted but it repr sents the highest amount of MS (more than 250 In general, these systems belong to small town and industries, metrologically highly vulnerab since, due to the low volumes involved, do not have a metrological assurance strategy f guaranteeing 100% of NG quantified, given the most of the efforts are focused on MS dealing with the highest volumes, according to Parel principle.

However, TGI S.A. ESP, with the target become a world class company and to guarante efficiency and equity in the NG transmission service, generating a high added value to interest groups, independent from its fina cial dimension, has not limited its efforts comply only what is necessary according to the regulation in terms of assuring its measuremen and thus planned the development of a mobi laboratory, autonomous and able to thorough execute all the processes to assure the quali and quantity of NG transmitted and measured type-B and type-C MS according to the OIML R1 guidelines [1]

ABBREVIATIONS 2.

111-		
re-	СМС	Calibration and Measurement Capabilities
0).	COE	Cab over engine
/ns	CREG	Acronym for the Colombian Energy and
ole Des		Gas Regulatory Body
for	EOS	Equation of State
nat	FAT	Factory acceptance test
ing	G	Gravitational acceleration
eto	HCDP	Hydrocarbon Dew Point
	ISO	International Organization for
to		Standardization
ee	MPE	Maximum permissible error
ion	MS	Measuring System
its	NG	Natural Gas
an-	RGM	Reference Gas Mixture
to	RUT	Acronym for the document on natural gas
he: hts:		regulatory measurement policies in
ile		Colombia [1]
hly	SAT	Site acceptance test
ity	Ur	Uncertainty required [2, p. 11.1.2]
in	VCML	Vehicle Conditioned as Mobile Laboratory
40	%RSD	Relative standard deviation

MEASURING INTERVALS 3.

In order to provide the CMC required for the metrological assurance of the MS, the M3Tlab laboratory was developed considering the functional specifications of the MS and its target instrumentation, as well as the requirements given in the Recommendation OIML R 140 [3] for systems with an accuracy class type B. This work implied the development of several states of the art ([4][5][6]), which allowed to study, compare and select, with supporting information, the technological alternatives to reach the expected CMC. The measuring intervals provided for M3Tlab are described below.

3.1. NATURAL GAS VOLUME

The technical specifications of the population of gas meters to calibrate with M3Tlab were taken into account for the development of the volumetric standard (Table 1). Also were considered the metrological and functional requirements necessary to guarantee the execution of calibrations with a CMC value close to 0.3% (k=2) in the determination of the measurement error.

Meter	Measuring	Meter Specifications	MPE
type	Interval		[1][2]
Rotary piston and turbine	2 m³/h a 650 m³/h	DN: 50 mm a 100 mm Connections: PN 20 a PN Outputs: Index, LF and HF	1%

Table 1. Technical specifications of the gas meters to be calibrated with M3Tlab

3.2. NATURAL GAS QUALITY

Considering the typical compositions of the Colombian natural gas, the need of a semi-extended NG analysis was projected, according to the measuring intervals given in Figure 1. By this means and using gas mixture laws, together with EOS, several properties of interest for the NG industry can be calculated, as for example: calorific value, hydrocarbon dew point temperature, density, compressibility factor, speed of sound, viscosity, and others. These properties and its specification limits are shown in Table 2.

To reduce the uncertainty associated to the NG sampling, a system with a probe, specially designed to allow its easy installation in the pipeline, was specified and configured. By this way it is possible to perform spot sampling and assuring the acquisition of representative samples from the natural gas flow.

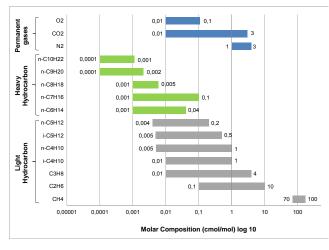


Figura 1. Components and ranges of concentration for natural gas analysis

Property	Measurement method	Measuring interval	
NG composition	Chromatography C10	Extended chromatography up to C10+. (Figure 1)	
Calorific value	Chromatography C10 + mixture laws	33.53 MJ/m³ a 44.71 MJ/m³	
Hydrocarbon dew point temperature	Chromatography C10 + EOS	-34 ℃ a 15.56 ℃	
Concentration of water vapor	Absortion in aluminum oxide sensor	10 mg/m³ a 590 mg/m³	

Table 2. Key measurands and specification limits in the gas quality module

3.3. ASSOCIATED MEASURANDS

Pressure, temperature and other measurands are obtained by electronic instruments, requiring metrological assurance in quantities as for example: electric resistance, current, voltage and frequency. Table 3 shows the measuring intervals for this associated measurands.

Measurand	Measuring interval	MPE [5]
	10.34 kPa – 206.8 kPa	0.2 kPa
Gauge pressure	103.4 kPa – 2 068 kPa	2 kPa
	517 kPa – 10 342 kPa	10.3 kPa
Temperature	-10°C a 150 °C	0.5 ℃
DC Electric potential	-15 V a 15 V	5 mV
DC Electric current	0.1 mA a 22 mA	8 µA
DC Resistance	10 Ohm a 200 Ohm	0.01 Ohm
Frequency	1 Hz a 10 000 Hz	0.1 Hz

Table 3. Measuring intervals and MPE for associated measurands

3.4. MAINTENANCE CAPABILITIES OF M3Tlab

do basic maintenances to the MS and its associated instruments was considered to be included as an integral section of M3Tlab. In this case, the requirements were the following:

- into account during the design and adjustments of the vehicle. Primarily to ensure reproducibility of the calibration and test methods. For this As a part of a complementary unit, the capacity to reason the following aspects were considered as mandatory: • Possibility of connect the vehicle to a conventional electrical power supply (electric network) if it was available. • Electrical ground testing Insulation testing Autonomous generation of electrical power, • Electrical signals analysis enough to supply energy to the entire set of equipment required for a properly and com- Disassembly, load lifting and mounting plete laboratory operation. of MS components • Basic electromechanical maintenance • Thermic isolation and fluid-dynamic of instruments and components design, oriented to maintain the stability in the temperature, regardless of the place where it operates. • Facilities for the handling and provision The measuring intervals described previously of specialty gases and RGM used in gas quality tests. • Anti-vibration mounts for equipment sensitive to vibrations taking place during transportation. • Easiness of access and mobility inside the vehicle (ladders, load platforms, etc.) • Engine power must be enough to allow the transportation of all crew and equipment. Ergonomic and safe spaces for the technical staff during its working sessions. 4. **RESULTS ACHIEVED** Once established the requirements matrix, from the analysis of the measuring intervals and the challenges, it was possible to start a multidisciplinary work, involving engineers and metrology experts in multiple disciplines. As a result the design of the laboratory was achieved. 4.1. VEHICLE CONDITIONED AS A MOBILE LABORATORY 4.1.1. Suspension and anti-vibration systems

3.5. CHALLENGES

represent a broad assortment of operational and metrological capacities, including physical and analytical quantities. These capacities have been hugely developed, implemented and documented for stationary laboratories.

However, integrating all the measurands cited before, inside a mobile laboratory, is a problem without a notable background because it has not been discussed or documented in previously works.

This condition led to do analysis and studies oriented to the design and adaptation of a vehicle to enable its use as a mobile laboratory, able to safely store and transport the measurement equipment, minimizing a probable affectation on the metrological performance, as a consequence of impacts and vibrations who take place during the displacement of the vehicle on the Colombian roads.

Moreover, there was the need of reduce the size of the mobile laboratory without generate an impact over its operational capacities. To accomplish this, it was necessary to design a suitable facilities planning and layout, oriented to the process of metrological assurance of the MS in the field. This goal was reached through the adaptation a vehicle, as small as possible, providing good mobility characteristics and allowing an easy access to the metering stations.

The conditioning of the vehicle as mobile laboratory The facilities necessary to generate (in the (VCML) was one of the most complex results to field), a set of conditions, similar to those reach in the project. M3Tlab was integrated on found in a stationary laboratory were taken a small truck HINO 300 Dutro Max manufactured

Develoment a Móvil Laboratory for Metrological Assegurance of guality and in Natural Gas Custody Transfer in Colombia

by Toyota [7], provided with a COE type cabin, conventional leaf springs in the rear suspension (semi-elliptic) and shock absorbers with double action.

This configuration can be easily obtained in the Colombian market and is commonly used for load transportation, mainly because its stiffness, long term life and low maintenance costs. However, this type of suspension transfers low frequency vibrations or impacts to the load [8], [9], [10].

These undesirable effects do grow with the vehicle speed, suspension stiffness and road guality [11]. For these reasons a special suspension system was designed and located between the truck chassis and the laboratory container or truckvan. This system reduces the magnitude of impacts with no risks on the stability of the mobile laboratory during its displacement.

The simple and effective solution was to install conical mounts longitudinally distributed (Figure 2), according to the expected mass distribution. The result obtained was represented by a reduction of the acceleration vector (threeaxis) related with the impact that take place during transit.

In order to validate the effectiveness of the suspension, several routes with different terrain properties (wavy, potholes, pavement in bad condition or unpaved roads) were programmed and realized. In this test the impacts on the chassis (conventional suspension) and the truckvan (conditioned suspension) were recorded by means of three-axis accelerometers, configured with trigger at 1.5 G¹ and a sampling frequency of 50 kHz. By this way, the capacity of the suspension set was successfully confirmed with a reduction rate of 80% in the impacts magnitude (Figure 3 y Figure 4).

Although the conditioned suspension (second vibration damping level) allowed a reduction in the impacts level up 4 G, a third damping level was installed in order to reduce the impacts at a superior grade. This action had effects both on the equipment permanently mounted (fixed to the VCML), such as the chromatograph, electric generator, compressors, volumetric standard, etc. as well as the stored equipment because the workbenches and lockers have anti-vibration mounts in its fixation to the VCML.

Figure 2. Anti-vibration systems mounted on the VCLM for impact mitigation

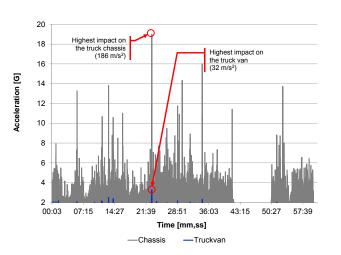


Figure 3. Impacts recorded during SAT tests (on the road)

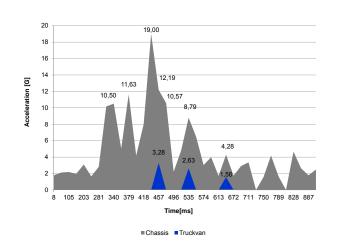


Figure 4. Comparison of impact mitigation

4.1.2. Facilities planning and layout of operational modules

The operative and metrological scopes related After some design iterations and the selection in section 3 were totally implemented during of the technologies and equipment to mount on the integration stage. Subsequently, FAT and SAT the vehicle, a compact, flexible and personalitests were carried out, both to single modules as zed plant layout was obtained, responding to the well as the whole assembly. requirements given by the calibration, test and maintenance processes. Figure 5 shows in dotted

These tests were the key to evaluate the capacilines the laboratory areas or modules. ties of the mobile laboratory and were conducted as a part of the strategy for monitoring its Modules A, B, C and D are located inside the performance along the time (see Table 5) and truckvan, while the E module has its access from under different environmental conditions. the outside (laterally).

4.1.3. Service facilities and results

The mobile laboratory capacity to operate in the field with no restrictions and a set of conditions and facilities, similar to those found in a stationary laboratory, it was necessary to integrate in the VCML of all the equipment listed in Table 4.

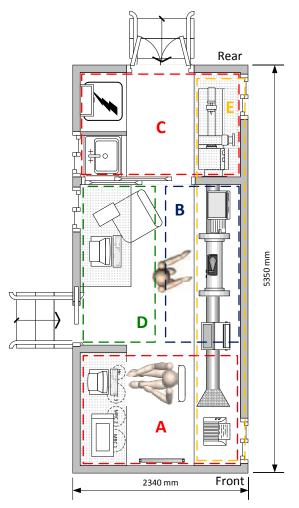


Figure 5. Facilities planning and layout. A-Gas quality. B- Associated measurands. C-Maintenance. D-Multi-purpose module. E- Gas volume

Develoment a Móvil Laboratory for Metrological Assegurance of guality and in Natural Gas Custody Transfer in Colombia

4.2. PERFORMANCE AND METROLOGICAL **STABILITY**

Equipment Specifications		Performance	
Electric generator	Inverter technology with a maximum power of 6.5 kW and output at 120/240 VAC (60 Hz)	Sinusoidal waveform at 60 Hz, proportional supply to electric load and an autonomy up to 10 hours	
Air conditioning R-410A refrigerant		Stability range of ±1.5°C per hour at temperatures 5°C below the Tamb	
Mid-pressure air compressed system	Single stage compressor with 5 µm filter	6.5 m³/h @ 0.82 Mpa	
High-pressure air compressed system	Double stage compressor with 0.5 μm filter and membrane dryer to obtain air with a dew point of -15°C at Patm	0.6 dm³/h @ 20.7 Mpa	

Table 4. Additional equipment integrated in the VCLM

Magnitud	Estrategia para Monitoreo de Desempeño	Desempeño obtenido en pruebas FAT y SAT	
Volumen de Gas	Verificación periódica, mediante calibración de un medidor rotativo de transferencia	Ver Numeral 4.2.1	
Composición de Gas C10+ Composición de Gas C10+ Composición de Gas C10+ Composición de retención, ruido y deriva en la respuesta del microcromatógrafo		Ver Numeral 4.2.2	
Contenido de Vapor de Agua	Comparación periódica con sensor de referencia	En proceso de evaluación de desempeño	
Presión	Comparación entre manómetros electrónicos sobre su intervalo de operación común	Estabilidad en la reproducción	
Temperatura	Comparación periódica con sensor de temperatura tipo RTD y reproducción del punto de hielo	Estabilidad en la reproducción	
Magnitudes Eléctricas	Calibración periódica con medidor-generador multifunción	En proceso de evaluación de desempeño	

Table 5. Strategy for monitoring metrological performance

¹ Gravitational acceleration. For the described experiments it corresponds to the local gravitational acceleration in the city of Piedecuesta (Colombia) 9.7778 m/s² [12]

Develoment a Móvil Laboratory for Metrological Assegurance of quality and in Natural Gas Custody Transfer in Colombia

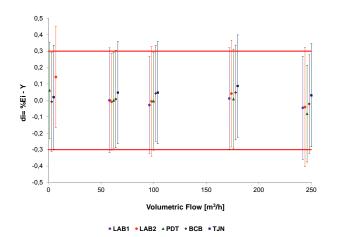
In the following sections are describing the main strategies shown in Table 6, planned for volume and quality modules.

4.2.1. Performance tests for the Gas Volume Module

The volume standard was integrated and its standard meters and measurement instruments were characterized and calibrated in the CDT de GAS laboratory, accredited by ONAC (the national accreditation body), according to the ISO/ IEC 17025 guidelines [13]. In the case of FAT and SAT tests, a double-piston rotary meter was used, whose flow rate range from 1.6 m³/h to 250 m^3/h , specified and acquired as the reference meter for the periodical verifications of the M3Tlab volume standard. This meter was previously characterized in the laboratory in order to confirm its metrological robustness and obtain the results of an initial calibration (see Cod LAB in Table 6), performed under laboratory controlled conditions. The initial error values were taken as reference values to compare against the calibration curves obtained later in the laboratory and in field, under ambient conditions described in Table 6.

In order to evaluate the volume standard stability were taken into account COX [14] criteria, applicable to comparisons, obtaining standard errors less than 0.35 which confirms the M3Tlab standard volume reproducibility, under several operating conditions in laboratory and in field.

As a reference graph of the performance obtained with the volume standard is presented in Figure 6, the deviation d_i (y axis) of errors (E_i) in the multiple calibrations respect to errors in the initial calibration ($d_i=0$ y axis).


Cod	Ciudad	Fecha* MM-DD	Altitud [msnm]	Patm [kPa]	Tamb [°C]	HR [%]
LAB	Piedecuesta	02-26	1 000	90.06	921.4	55.1
LAB1	Piedecuesta	02-28	1 000	90.08	21.3	50.4
LAB2	Piedecuesta	03-01	1 000	90.47	20.9	52.1
PDT	Piedecuesta	05-05	1 000	90.52	25.5	63.5
BCB	Barrancabermeja	04-24	100	100.36	28.5	77.5
TNJ	Tunja	05-07	2 950	70.62	13.2	88.4

* Año: 2013

Table 6. Testing conditions for the volumetric standard²

4.2.2. Performance tests for the Gas Quality Module

The main gas quality test installed in M3Tlab agrees with the determination of the GN C10+ composition. This test is carried out using a microchromatograph which separates and detects

Horizontal red lines correspond to uncertainty of the initial errors, taken as reference values.

> Figure 6. Instrumental drift evaluated on the reference meter

GN compounds in 3 minutes, using Helium as carrier gas. This instrument has a detection limit of 1 ppm, and a 1 μ L minimum injection volume compound by four independent chromatographic modules having the following configuration:

- Column Hayesep A, 0,4m, Heated Injector, Backflush.
- Column CP-Sil 5 CB, 4m, Heated Injector, Backflush.
- Column CP-Sil 5 CB, 8 m, Heated Injector.
- Column MS5A PLOT, 20m, Heated Injector.

When evaluating the microchromatograph performance, 3 RGM were used, prepared with the gravimetric method and concentrations lying within the foresaw interval (Figure 1), mass uncertainty $\leq 1\%$ and HCDP $\leq 0^{\circ}$ C. The tests consisted in the evaluation of repeatability and reproducibility of the microchromatograph response area under the conditions described in Table 7.

ld.	Location	Altitude [mamsl]	Patm [kPa]	Tamb [°C]	HR [%]
PDT	Piedecuesta	1 000	90.52	23.0	60.0
BCB	Barrancabermeja	100	100.36	25.0	68.5

Table 7. Testing conditions for the Microchromatrograph

The results indicated that the repeatability and reproducibility are characteristics of each group of compounds (permanent gases, Light Hydrocarbon and Heavy Hydrocarbon), and the concentration range of the compound of interest. Therefore, it was established a matrix for monitoring the performance of the GC in terms of repeatability (Table 8) and Reproducibility (Table 9).

Concentration Ranges	100 – 10 [cmol/mol]	10 – 1 [cmol/mol]	1 – 0,01 [cmol/mol]	0,01 – 0,000 [cmol/mol]		
Permanent gases	-	< 0,8	< 6	< 10		
Heavy Hydrocarbon	-	< 0,5	< 2	< 5		
Light Hydrocarbon	< 0,2	< 0,2	< 1	< 1,75		
Maximum %RSD obtained at the evaluation of 3 RGM (between the concentration intervals of interest),						

ased on the average of three consecutive injection

Table 8. Repeatability [%RSD] in the response areas of the micro-chromatograph

Concentration Ranges	100 – 10 [cmol/mol]	10 – 1 [cmol/mol]	1 – 0,01 [cmol/mol]	0,01 – 0,000 [cmol/mol]
Permanent gases	-	< 2,5	N/D	< 20
Heavy Hydrocarbon	-	N/D	N/D	< 7,5
Light Hydrocarbon	< 0,35	< 0,5	< 2,5	N/D

Maximum %RSD obtained at the evaluation of 3 RGM (between the concentration intervals of interest), based on the average of three consecutive injections, carried on three consecutive days, turning off and on the equipment everyday

Table 9. Reproducibility [%RSD] in the response areas of the micro-chromatograph

5. PROJECTION

Even though the main objective in M3Tlab deve-Eléctrico de un Laboratorio Móvil de Metrología," CDT de GAS, lopment and application lies in the NG measu-Piedecuesta, Colombia, SOA INFG-11-VAR-135-1842, Aug. 2012. rement systems metrological assurance to small [5] J. A. Angulo and J. F. Moreno, "Tecnologías Compactas y towns and companies with metrological vulne-Móviles para Proveer Trazabilidad a Magnitudes Asociadas en la Merability, it is expected to take good profit of its dición de Transferencia de Custodia de Gas Natural," CDT de GAS, characteristics to perform studies about the cali-Piedecuesta, Colombia, SOA INFG-11-VAR-134-1842, Aug. 2012. bration performance and tests in-situ, technical [6] S. M. Hernández and F. O. Herrera, "Tecnologías Compactas y Móviles para la Medición de los Parámetros de Calidad del staff training (metrologists) and dissemination of Gas Natural," CDT de GAS, Piedecuesta, Colombia, SOA INFGthe benefits of metrology in industry, given the 11-VAR-131-1842, Aug. 2012. ease of transportation, location and operation [7] "HINO 300 Series | Trucks | Products | HINO GLOBAL." under wide ambient conditions.

In short term a pre-operative stage will be carried out which is expected to continue the evaluation and improvement of the M3Tlab metrological performance parameters and experience to start interlaboratory comparison processes will be obtained in order to support declared CMC and later ask for the accreditation according to ISO/IEC 17025 guidelines [13]

6. CONCLUSIONS

M3Tlab, including developed instruments or subsequently acquired and integrated to the system providing it with the capacity to operate in-situ with similar characteristics to those stationary metrology laboratories, was tested and proved to perform as predicted by means of FAT and SAT tests

The efficiency of the suspension system and the anti-vibration systems were proven which were installed to reduce 1) the impact when moving the VCML and 2) vibrations caused by the facilities (electric generator, air conditioned and compressors)

The results about the metrological performance of the procedures, and calibration and measurement instrument integrated to M3Tlab, evaluated during FAT and SAT, confirmed the accomplishment of the metrological requisites predicted as mobile laboratory range.

Performance tests described in the present paper correspond to the most representatives, initially executed to validate the development obtained. However, several metrological and functional tests were carried out issuing successful results, but due to its extension they will be described in detail and individually in future opportunities.

REFERENCES

[1] CREG, "Resolución CREG 071 de 1999 - Reglamento Único de Transporte." Diario Oficial, 1999.

[2] OIML TC 8/SC Gas meters, "OIML R137 Gas meters Part 1: Metrological and technical requirements - Part 2: Metrological controls and performance tests." OIML.

[3] OIML TC 8/SC 7 Gas metering, "OIML R 140 Measuring systems for gaseous fuel." OIML.

[4] O. Y. Salah and J. F. Moreno, "Facilidades para el Suministro

- [Online]. Available: http://www.hino-global.com/products/ trucks/300.html. [Accessed: 11-Jan-2013].
- [8] S. P. Singh, A. P. S. Sandhu, J. Singh, and E. Joneson, "Measurement and analysis of truck and rail shipping environment in India," Packaging Technology and Science, vol. 20, no. 6, pp. 381-392, Nov. 2007.
- [9] G. O. Rissi, S. P. Singh, G. Burgess, and J. Singh, "Measurement and analysis of truck transport environment in Brazil," Packaging Technology and Science, vol. 21, no. 4, pp. 231-246, Jun. 2008.
- [10] V. Chonhenchob, S. P. Singh, J. J. Singh, S. Sittipod, D. Swasdee, and S. Pratheepthinthong, "Measurement and analysis of truck and rail vibration levels in Thailand," Packaging Technology and Science, p. n/a-n/a, 2010.
- [11] T. T. Fu and D. Cebon, "Analysis of a truck suspension database," International Journal of Heavy Vehicle Systems, vol. 9, no. 4, pp. 281-297, 2002.
- [12] "Gravity Information System PTB." [Online]. Available: http://www.ptb.de/cartoweb3/SISproject.php. [Accessed: 12-Jan-2013].
- [13] ISO/IEC, "ISO/IEC 17025 Requisitos generales para la competencia de los laboratorios de ensayo y de calibración." ISO, 2005. [14] M. Cox, "The evaluation of key comparison data," Metrologia, vol. 39, p. 589, 2002.

 $^{^2}$ To help the viewing of the results, these have been slightly displaced around the real flow rates tested.

The 16th International Flow Measurement Conference Flomeko 2013

www.flomeko2013.fr

París 24 -26 Septiembre 2013

